2 Monotone Functions and Monotone Circuits

نویسنده

  • Madars Virza
چکیده

In the last lecture we looked at lower bounds for constant-depth circuits, proving that PARITY cannot be computed by constant-depth circuits, i.e. PARITY / ∈ AC0. General circuit lower bounds for explicit functions are quite weak: the best we can prove after years of effort is that there is a function, which requires circuits of size 5n − o(n). In this lecture we will examine what happens if we place natural restrictions on a circuit. Namely, we will prove that detecting a clique in a graph requires superpolynomial circuits.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

GENERALIZED POSITIVE DEFINITE FUNCTIONS AND COMPLETELY MONOTONE FUNCTIONS ON FOUNDATION SEMIGROUPS

A general notion of completely monotone functionals on an ordered Banach algebra B into a proper H*-algebra A with an integral representation for such functionals is given. As an application of this result we have obtained a characterization for the generalized completely continuous monotone functions on weighted foundation semigroups. A generalized version of Bochner’s theorem on foundation se...

متن کامل

Monotone circuits for monotone weighted threshold functions

Weighted threshold functions with positive weights are a natural generalization of unweighted threshold functions. These functions are clearly monotone. However, the naive way of computing them is adding the weights of the satisfied variables and checking if the sum is greater than the threshold; this algorithm is inherently non-monotone since addition is a non-monotone function. In this work w...

متن کامل

Disproving the Single Level Conjecture

We consider the size of monotone circuits for quadratic boolean functions, that is, disjunctions of length-2 monomials. Our motivation is that a good (linear in the number of variables) lower bound on the monotone circuit size for a certain type of quadratic function would imply a good (even exponential) lower bound on the general non-monotone circuit size. To get more insight into the structur...

متن کامل

On derandomization and average-case complexity of monotone functions

We investigate whether circuit lower bounds for monotone circuits can be used to derandomize randomized monotone circuits. We show that, in fact, any derandomization of randomized monotone computations would derandomize all randomized computations, whether monotone or not. We prove similar results in the settings of pseudorandom generators and average-case hard functions – that a pseudorandom g...

متن کامل

Lecture 11 : Circuit Lower

There are specific kinds of circuits for which lower bounds techniques were successfully developed. One is small-depth circuits, the other is monotone circuits. For constant-depth circuits with AND,OR,NOT gates, people proved that they cannot compute simple functions like PARITY [3, 1] or MAJORITY. For monotone circuits, Alexander A. Razborov proved that CLIQUE, an NP-complete problem, has expo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012